SYNTHESIS OF (土)-ANNONELLIPTINE AND (土)-ANOMOLINE

Chi-Ming Chen,* Yu-Fei Fu, and Tsang-Hsiung Yang
School of Pbarmacy and Graduate Institute of Pharmaceutical Sciences, Taipei Medical College, Taipei, Taiwan 110, Republic of Cbina

Abstract

In order to confirm the structures of annonelliptine [1] and anomoline [2], chemical synthesis of $(\pm)-1$ and $(\pm)-2$ has been achieved. Two isomeric alkaloids, $(\pm)-\mathrm{N}-$ northalmeline [3] and (\pm)-thalmeline [4] were also prepared by a similar approach. The structures of $\mathbf{1}$ and $\mathbf{2}$ were confirmed unequivocally by comparison with the synthetic samples. COLOC and nOe nmr spectra were also used to study the structures of these compounds.

Two novel tetraoxygenated benzylisoquinoline alkaloids, annonelliptine [1] from Annona elliptica (1) and anomoline [2] from Annona cherimola (2), were reported recently. The structures of these two naturally occurring alkaloids were elucidated entirely by spectroscopic methods and assigned as (R)-1-(4^{\prime}-hydroxy-benzyl)-2-methyl-5,6-dimethoxy-7-hy-droxy-1,2,3,4-tetrahydroisoquinoline \{1\} and its des- N-methyl base [2]. The substitution patterns in ring A of $\mathbf{1}$ and 2 were assigned by correlation with nmr measurements of related alkaloids $(1,2)$. However, the possibility of hydroxy substitution at $\mathrm{C}-5$ in ring A was not excluded completely. Herein, the chemical syntheses of $(\pm)-1$ and $(\pm)-2$, along with their isomeric benzylisoquinolines, (\pm)-N-northalmeline [3] and (\pm)-thalmeline [4], are reported as confirmation of their structures.

The syntheses of alkaloids $\mathbf{1 - 4}$ are illustrated in Scheme 1. The major step in the formation of the benzylisoquinoline ring was carried out by BischlerNapieralski cyclization in the presence of POCl_{3} (3). Substitured benzaldehydes 5 and 6 were prepared as described previously (4,5), and were differentiated by their ${ }^{1} \mathrm{H}$-nmr spectra. The chemical shift of the aldehyde proton in 6 was lower than that of 5 by about 1.12 ppm due to the intramolecular hydrogen bonding of the OH to the aldehyde moiety at the ortho position. In addition, irradiation of the methoxy signal of 5 at $\delta 3.93$ enhanced the aromatic H signal at $\delta 7.27$ by
7.6%, but no nOe effect was detected when the methoxy signal of 6 was irradiated. Isoquinolines 15 and 16 were prepared from aldehydes 5 and 6 as shown in Scheme 1. N-Methylation of $\mathbf{1 5}$ and 16 by reaction with formalin followed by NaBH_{4} reduction yielded the N-methyl isoquinolines 17 and 18. Catalytic hydrogenation of 15-18 on Pd-charcoal to remove the protecting benzyl group yielded $2,3,1$, and 4 , respectively. The spectral and other physical data of $\mathbf{1}$ and 2 were identical to those of natural 1 and 2, establishing their structures. ${ }^{1} \mathrm{H}-\mathrm{Nm}$ r studies on these alkaloids revealed that the C-7 methoxy signal of $\mathbf{3}$ or $\mathbf{4}$ shifted toa slightly lower field than other methoxy signals within these molecules. The chemical shift of the aromatic proton at C-8 may be used to distinguish between 1 and 2 or 3 and 4 . The aromatic proton at C-8 was shifted to a significantly lower field in isomers in which the OH was substituted at $\mathrm{C}-5$ (3 and 4) compared with isomers in which it was at C-7 (1 and 2). Enhancement of the aromatic proton signal at $\mathrm{C}-8$ by 2.4% and 4.7% in an nOe difference spectrum was observed when the methoxy signal at $\mathrm{C}-7$ of $\mathbf{3}$ or $\mathbf{4}$ was irradiated, respectively. Moreover, the structure of 2 was also characterized by analysis of its ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ COSY and COLOC nmr spectra to confirm that two methoxy groups are substituted at the C5 and C-6 positions, and that the hydroxy substituent was located at the C-7 position. Assignments of the results from the COLOC spectrum are summarized in

$13 \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
$14 \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$

Scheme 1

Figure 1. Compound 4 (thalmeline) was originally isolated from Thalictrum minus by Nikola et al. (6) in 1970, but neither the isolation from a natural source nor the synthesis of N-northalmeline [3] has been reported in the literature.

EXPERIMENTAL

General experimental procedures.-All mps were measured on a Laboratory Devices melting point apparatus and are reported uncorrected. Uv spectra were obtained on a Jasco 7800 uv-vis spectrophotometer. Ir spectra were taken on a

Figure 1. Correlation observed in the COLOC nmr spectrum of anomoline. HCl [2].

Jasco A-100 grating ir or a Nicolet MX-1 Ft-ir spectrophotometer as KBr disks. The nmr spectra were recorded using a Varian EM-360 nmr or a Bruker AM-300 nmr spectrometer in CDCl_{3} unless otherwise stated. Mass spectra were determined with a JEOL TMS-D- $300 \mathrm{gc} / \mathrm{ms}$ instrument. Elemental analysis was carried out with a Perkin-Elmer 2400 elemental analyzer.

2-Benzyloxy-3,4-dimethoxybenzaldehyde [8].A mixture of 2 -hydroxy- 3,4 -dimethoxybenzaldehyde [6] (5) ($10 \mathrm{~g}, 54.9 \mathrm{mmol}$), $10 \mathrm{ml}(78.9$ mmol) of benzyl chloride, and 5.4 g anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 50 ml of EtOH was refluxed for 5 h to yield the crude product 8 . After purification by Si gel cc using CHCl_{3} as eluent, 10.99 g (73.6%) of 8 were obtained as a pale yellow oil; ir ν max (neat) $2750,1680(\mathrm{CHO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.77(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 5.07\left(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.61(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}, \mathrm{H}-5), 7.25\left(5 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{~Pb}\right), 7.45(1 \mathrm{H}$, $\mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-6), 10.05(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

4-Benzyloxy-2,3-dimethoxy- β-nitrostyrene [9].-A mixture of 4-benzyloxy-2,3-dimethoxybenzaldehyde [7] (3) (6.4 g, 23.5 mmol$)$, nitromethane ($4.5 \mathrm{ml}, 73.8 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}$ (4.6 g) in 70 ml of AcOH was refluxed for 4 h . After cooling, the mixture was poured into 500 ml of ice $-\mathrm{H}_{2} \mathrm{O}$. Yellow needles were obrained after crystallization from EtOH to give 5.55 g (74.88%) of 9; mp 83-84 ${ }^{\circ}$; ir $\nu \max 1628\left(\mathrm{~s}, \mathrm{NO}_{2}\right), 1500$, $1340\left(\mathrm{~s}, \mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-$ 2), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-3$), 5.04 (2 H , s, $-\mathrm{OCH}_{2} \mathrm{Ph}$), $6.61(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-5), 7.02(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, $\mathrm{H}-6), 7.28\left(5 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{~Pb}\right), 7.58(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}, \alpha-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \beta-\mathrm{H})$.

2-Benzyloxy-3,4-dimetboxy- β-nitrostyrene [10].-A mixture of 8 ($13.5 \mathrm{~g}, 44.9 \mathrm{mmol}$), nitromethane ($10 \mathrm{ml}, 164 \mathrm{mmol}$), and $\mathrm{NH}_{4} \mathrm{OAc}$ $(10 \mathrm{~g})$ in 180 ml of AcOH yielded $12 \mathrm{~g}(76.8 \%)$ of 10 as yellow needles; $\mathrm{mp} 86-87^{\circ}$; ir $v \max 1610$ (s, NO_{2}) $1490,1330\left(\mathrm{~s}, \mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta$ $3.87(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 5.09\left(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $6.66(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-5), 7.13(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, $\mathrm{H}-6), 7.33\left(5 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} P b\right), 7.54(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}, \alpha-\mathrm{H}), 8.01(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \beta-\mathrm{H})$.

及-(2,3-Dimethoxy-4-benzyloxy)phenylethylamine [11].-A solution of 9 (7.1 g, 22.5 mmol) in 80 ml of anhydrous THF was added dropwise to a well-stirred suspension of LiAlH_{4} (3 $\mathrm{g}, 79.4 \mathrm{mmol}$) in 120 ml of anhydrous $\mathrm{Et}_{2} \mathrm{O}$, and the mixture was refluxed for 4 h . Excess LiAlH_{4} was destroyed by dropwise addition of 3 ml of $\mathrm{H}_{2} \mathrm{O}, 3 \mathrm{ml}$ of $15 \% \mathrm{NaOH}$ solution, and 3 ml of $\mathrm{H}_{2} \mathrm{O}$. The combined filtrate was concentrated to dryness under reduced pressure, and an oily amine 11 was obtained. It was converted to the HCl salt to yield $11 \cdot \mathrm{HCl}(4.3 \mathrm{~g}, 59.1 \%)$ as white crystals; mp 141-142 ${ }^{\circ}$; ir v max $3350,3330\left(\mathrm{~m}, \mathrm{NH}_{2}\right)$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{Hnmr} \delta 1.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $2.50-3.05(4 \mathrm{H}, \mathrm{m}$, methylenes), $3.77(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{OMe}), 4.93\left(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.48(1 \mathrm{H}, \mathrm{d}$,
$J=9 \mathrm{~Hz}, \mathrm{H}-6), 6.67(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-5), 7.25$ ($5 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{~Pb}$).

B-(2-Benzyloxy-3,4-dimethoxy)phenylethylamine [12].-A solution of 10 ($15 \mathrm{~g}, 47.6$ mmol) in 150 ml of anhydrous THF was reduced with $\mathrm{LiAlH}_{4}(6.5 \mathrm{~g}, 171 \mathrm{mmol})$ to afford 9.94 g (64.53%) of $\mathbf{1 2} \cdot \mathrm{HCl}$ as white crystals; mp 141$142^{\circ}$; ir $\nu \max 3350,3330\left(\mathrm{~m}, \mathrm{NH}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\delta 1.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $2.45-$ $3.00\left(4 \mathrm{H}, \mathrm{m}, \alpha, \beta-\mathrm{CH}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-4)$, 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-3$), $4.90\left(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.44$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-6), 6.68(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-$ 5), $7.23\left(5 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{~Pb}\right)$.

N-(2,3-Dimetboxy-4-benzyloxypbenylethyl)-4'benzyloxyphenacetamide [13].-A mixture of p benzyloxyphenylacetic acid ($7 \mathrm{~g}, 28.9 \mathrm{mmol}$) and $\mathrm{SOCl}_{2}(11 \mathrm{ml}, 152 \mathrm{mmol})$ in 45 ml of anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed for 1.5 h . After cooling, the solvent was removed to give a crude pale yellow residue of the acid chloride. A solution of this acid chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of $11\left(7.1 \mathrm{~g}, 24.7 \mathrm{mmol}\right.$) in 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50 ml of $5 \% \mathrm{NaOH}$ solution in a cooling bath. After stirring at room temperature for 1 h , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, and then with dilute HCl three times, and then dried over anhydrous MgSO_{4}. The solution was evaporated to give a yellow oil which was recrystallized from EtOH to afford $11.19 \mathrm{~g}(88.47 \%)$ of $\mathbf{1 3}$ as white crystals; $\mathrm{mp} 91-92^{\circ}$; ir $v \max 3300\left(\mathrm{~s}, \mathrm{NH}_{2}\right), 1625(\mathrm{~s}$, amide I), 1505 (s, amide II) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 2.54$ $\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 3.1(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}$, $\left.\mathrm{NH}-\mathrm{CH}_{2}\right), 3.3\left(2 \mathrm{H}, \mathrm{s},-\mathrm{COCH}_{2} \mathrm{Ph}\right), 3.65(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}-2), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-3), 4.91(4 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.37(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}, \mathrm{H}-6), 6.52(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-5), 6.73$ ($2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$), 7.02 ($2 \mathrm{H}, \mathrm{d}, J=9$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-\mathrm{S}^{\prime}\right), 7.21\left(10 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{~Pb}\right)$; eims $m / z[\mathrm{M}]^{+} 511$ (1), 271 (11), 270 (58), 180 (13), 179 (15), 167 (14), 91 (100).

N-(2-Benzyloxy-3,4-dimetboxyphenyletbyl)-4'benzyloxyphenacetamide [14].-The acetyl chloride prepared from p-benzyloxyphenylacetic acid (7.3 $\mathrm{g}, 30.1 \mathrm{mmol}$) and $\mathrm{SOCl}_{2}(4.4 \mathrm{ml}, 61.8 \mathrm{mmol})$ was reacted with amine $12(8.6 \mathrm{~g}, 30 \mathrm{mmol})$ in the presence of NaOH solution. After workup, 12.2 g (79.7%) of 14 as white crystals were obtained from $\mathrm{EtOH} ; \mathrm{mp} 77-78^{\circ}$; ir $\nu \max 3250(\mathrm{NH}, \mathrm{s}), 1620$ (s, amide I), 1490 (s, amide II) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta$ $2.62\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 3.26(2 \mathrm{H}, \mathrm{t}, J=6$ $\left.\mathrm{Hz}, \mathrm{NHCH}_{2}\right), 3.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{Ph}\right), 3.85(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{OMe}), 5.1\left(4 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.62(1 \mathrm{H}$, brs, NH), $6.53(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-6), 6.71(1 \mathrm{H}$, $\mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-5), 6.85\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-\right.$ $\left.6^{\prime}\right), 7.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.37(10 \mathrm{H}$, $\mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{~Pb}$); eims $m / z[\mathrm{M}]^{+} 511$ (4), 270 (29), 180 (49), 167 (23), 91 (100).

1-(4'-Benzyloxybenzyl)-5,6-dimetboxy-7-benzyloxy-1,2,3,4-tetrabydroisoquinoline [15].—A
mixture of $13(5 \mathrm{~g}, 9.78 \mathrm{mmol})$ and $\mathrm{POCl}_{3}(4.6 \mathrm{ml}$, 28.2 mmol) in 40 ml of CHCl_{3} was refluxed for 2 h. After cooling, excess reagents were removed in vacuo to give a brown residue of a dihydroisoquinoline. $\mathrm{NaBH}_{4}(2.2 \mathrm{~g}, 58 \mathrm{mmol})$ was added to this residue in 40 ml of MeOH over 20 min and was then stirred for 30 min at room temperature. The mixture was evaporated to dryness and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and extracted with 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The extract was washed well with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, filtered, and concentrated to dryness under reduced pressure. The oily residue was treated with 1 M HCl in $\mathrm{Et}_{2} \mathrm{O}$ and 3.97 g (76.5%) of $15 . \mathrm{HCl}$ was obtained. The crude HCl salt was recrystallized from ErOH to give white crystals of 15. HCl ; mp 210-211 ${ }^{\circ}$; ir $v \max 3320$ (w, NH) $\mathrm{cm}^{-1} ; \mathrm{uv} \lambda \max (\mathrm{MeOH})(\log \epsilon) 284$ (3.24), 225 (4.54) nm; $\lambda \min (\mathrm{MeOH})(\log \epsilon) 254$ (2.81) nm; ${ }^{1} \mathrm{H}$ nmr $\delta 1.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.38-2.83(6 \mathrm{H}, \mathrm{br} \mathrm{m}$, methylenes), $3.68,3.7(6 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{OMe}), 4.0(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1), 4.85\left(4 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.34(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8), 6.74\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.98$ $\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.21(10 \mathrm{H}, \mathrm{s}$, $2 \times-\mathrm{OCH}_{2} \mathrm{P} b$); eims $m / z 299$ (21), 298 (100), 192 (23), 91 (20).

1-(4'-Benzyloxybenzyl)-5-benzyloxy-6,7-dimetboxy-1,2,3,4-tetrabydroisoquinoline [16].—A solution of $14(5 \mathrm{~g}, 4.8 \mathrm{mmol})$ was treated with $\mathrm{POCl}_{3}(4.6 \mathrm{ml}, 28.2 \mathrm{mmol})$ in CHCl_{3} and then reduced with 2.2 g (58 mmol) of NaBH_{4} in MeOH to yield $14 \mathrm{~g}(79.7 \%)$ of $\mathbf{1 6} \cdot \mathrm{HCl} ; \mathrm{mp} 164-164^{\circ}$; ir $v \max 3340(\mathbf{w}, \mathrm{NH}) \mathrm{cm}^{-1}$; uv $\lambda \max (\mathrm{MeOH})$ $(\log \epsilon) 282(3.76), 228(4.30) \mathrm{nm} ; \lambda \min (\mathrm{MeOH})$ $(\log \epsilon) 254(3.18) \mathrm{nm} ;{ }^{\mathrm{t}} \mathrm{H} \mathrm{nmr} \delta 2.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, 2.43-3.14 (6 H , br m, methylenes), 3.77 ($3 \mathrm{H}, \mathrm{s}$, OMe-7), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-6$), 4.1 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), $5.01\left(4 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, $6.89\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.09(2 \mathrm{H}, \mathrm{d}$, $\left.J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.36\left(10 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{~Pb}\right.$); eims $m / z[\mathrm{M}+1\}^{+} 496(1), 312(20), 299(29), 298$ (100), 207 (13), 206 (11), 192 (25), 178 (22), 91 (56).

1-(4'-Benzyloxybenzyl)-2-metbyl-5,6-dimethoxy-7-benzyloxy-1,2,3,4-tetrabydroisoquinoline [17].-A MeOH solution of 15 ($1.86 \mathrm{~g}, 3.8$ mmol) was stirred with $\mathrm{HCHO}(5.5 \mathrm{ml}, 64 \mathrm{mmol})$ for 30 min at room temperature and then NaBH_{4} ($1.2 \mathrm{~g}, 40 \mathrm{mmol}$) was added. The solution was evaporated and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic layer was dried over anhydrous MgSO_{4} and evaporated, and then 1 M HCl in $\mathrm{Er}_{2} \mathrm{O}$ was added. The N -methylisoquinoline $\mathbf{1 7} \cdot \mathrm{HCl}(1.8 \mathrm{~g}, 86.8 \%)$ was crystallized as white needles; mp 193-194 ${ }^{\circ}$; uv $\lambda \max (\mathrm{MeOH})(\log \epsilon) 279$ (3.72), 220 (4.66) $\mathrm{nm} ; \lambda \min (\mathrm{MeOH})(\log \epsilon) 253$ (3.29) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\delta 2.4$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{N}$), 2.53-3.17 ($6 \mathrm{H}, \mathrm{m}$, methylenes), 3.75 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$), $4.68,4.89(4 \mathrm{H}, \mathrm{d}$, $\left.2 \times-\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 6.83(4 \mathrm{H}, \mathrm{s}$,
$J=9 \mathrm{~Hz}, \mathrm{AB}$ q), $7.24\left(10 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} P b\right.$); eims $m / z[\mathrm{M}+1]^{+} 510(0.2), 313$ (19), 312 (100), 298 (26), 178 (4), 91 (16).

1-(4'-Benzyloxybenzyl)-2-metbyl-5-benzyloxy-6,7-dimethoxy-1,2,3,4-tetrabydroisoquinoline [18].-A solution of $\mathbf{1 6}(1.86 \mathrm{~g}, 3.8 \mathrm{mmol})$ in 25 ml of MeOH was N -methylated with HCHO (5.5 $\mathrm{ml}, 64 \mathrm{mmol}$) and then reduced with $\mathrm{NaBH}_{4}(12$ $\mathrm{g}, 40 \mathrm{mmol})$. Workup gave $1.85 \mathrm{~g}(90.85 \%)$ of 18. $\mathrm{HCl} ; \mathrm{mp} 92-93^{\circ}$; uv $\lambda \max (\mathrm{MeOH})(\log \epsilon)$ 280 (3.35), 225 (4.38) nm; $\lambda \min (\mathrm{MeOH})(\log \epsilon)$ 255 (2.75) nm; ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 2.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{N}$), $2.46,2.30(6 \mathrm{H}, \mathrm{m}$, methylenes), $3.42(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}-7$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-6$), 4.71 ($4 \mathrm{H}, \mathrm{s}$, $\left.2 \times-\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 6.76(2 \mathrm{H}, \mathrm{d}$, $\left.J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.9\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$, H-5'), $7.27\left(10 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{OCH}_{2} \mathrm{~Pb}\right)$; eims $m / z 313$ (21), 312 (100), 206 (23), 192 (15), 91 (14).

1-(4'-Hydroxybenzyl)-5,6-dimetboxy-7-by-droxy-1,2,3,4-tetrabydroisoquinoline HCl [(\pm)anomoline HCl$][2]$.-A solution of $15(0.5 \mathrm{~g}, 0.9$ mmol) in 30 ml of ErOH was shaken with H_{2} at 25 psi in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ for 2 h . The filtrate was concentrated to dryness under reduced pressure and 1 M HCl in $\mathrm{Et}_{2} \mathrm{O}$ was added to yield $210 \mathrm{mg}(63.3 \%)$ of $2 \cdot \mathrm{HCl}$ as white crystals from ErOH ; mp $238.5-240^{\circ}$; [lit. (2) 193-194.5 (free base)]; ir ν max $3330(\mathrm{OH}, \mathrm{s}), 2800-2400(\mathrm{w}$, $\left.>\mathrm{NH}_{2}^{+}\right) \mathrm{cm}^{-1}$; uv $\lambda \max (\mathrm{MeOH})(\log \epsilon) 280$ (3.58), 227 (4.2) nm; $\lambda \min (\mathrm{MeOH})(\log \epsilon) 252.5$ (2.79) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.75-3.31(6 \mathrm{H}$, m , methylenes), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-5$), $3.76(3 \mathrm{H}, \mathrm{s}$, OMe-6), 4.49 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 6.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), $6.76\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.16(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 9.29\left(2 \mathrm{H}, \mathrm{s} \mathrm{br},>\mathrm{NH}_{2}{ }^{+}\right.$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $9.41\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $9.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 18.7$ (C-4), 37.8 (C3), 54.3 (C-1), 59.4 (OMe), 109.0 (C-8), 114.8 (C3^{\prime}, C-5' $^{\prime}$, 115.7 (C-4a), $129.9\left(\mathrm{C}-2^{\prime}, \mathrm{C}^{\prime} \mathbf{6}^{\prime}\right), 127.3$ (C-1'), 125.3 (C-8a), 139.3 (C-6), 149.6 (C-7), 148.8 (C-5), 155.8 (C-4'); eims $m / z[\mathrm{M}+1]^{+} 316$ (0.3), 209 (15), 208 (100), 192 (18); anal., calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot \mathrm{HCl}, \mathrm{C} 61.45, \mathrm{H} 6.30, \mathrm{~N} 3.98$, found C 61.20, H 6.21, N 3.95.

1-(4'-Hydroxybenzyl)-5-bydroxy-6,7-di-methoxy-1,2,3,4-tetrabydroisoquinoline $\mathrm{HCl}[(\pm)-\mathrm{N}$ northalmeline HCl$][3]$.-A mixrure of $\mathbf{1 6}(1 \mathrm{~g}, 1.8$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(250 \mathrm{mg})$ in 100 ml of EtOH under H_{2} was shaken for 2 h and treated with HCl to afford $400 \mathrm{mg}(60.54 \%)$ of $3 \cdot \mathrm{HCl}$ as crystals from EtOH; mp 220-222 ${ }^{\circ}$ (free base, mp $207-208^{\circ}$); is $\nu \max 3240(\mathrm{~s}, \mathrm{OH}), 2800-2400(\mathrm{w}$, $\left.>\mathrm{NH}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; uv $\lambda \max (\mathrm{MeOH})(\log \epsilon) 278.5$ (3.54), $224(4.34) \mathrm{nm} ; \lambda \min (\mathrm{MeOH})(\log \epsilon) 255$ (2.96) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.72-3.36(6 \mathrm{H}$, m , methylenes), $3.57(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-7), 3.64(3 \mathrm{H}, \mathrm{s}$, OMe-6), 4.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 6.09 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), $6.75\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-\mathrm{s}^{\prime}\right), 7.13(2 \mathrm{H}, \mathrm{d}$,
$J=8.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime}$), $9.10\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 9.42 (2 H, br $\mathrm{s},>\mathrm{NH}_{2}{ }^{+}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $9.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO- $\left.d_{6}\right) \delta 19.5$ (C-4), 38.5 (C3), 55.4 (C-1), $55.5,60.3$ (OMe), 101.6 (C-8), 112.9 (C-4a), 115.4 (C-3', C-5'), 126.3 (C-8a), 127.8 (C-1'), 130.8 (C-2', C-6'), 135.1 (C-6), 147.4 (C-7), 150.9 (C-5), 156.5 (C-4'); eims m/z $[\mathrm{M}+1]^{+} 316(0.3), 209(14), 208(100), 192(10)$; anal., calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot \mathrm{HCl}, \mathrm{C} 61.45, \mathrm{H} 6.30$, N 3.98 , found C 61.12, H 6.34, N 3.95.

1-(4'-Hydroxybenzyl)-2-metbyl-5,6-dimethoxy-7-bydroxy-1,2,3,4-tetrabydroisoquinoline $\mathrm{HCl}[(\pm)$ annonelliptine HCl [$\mathbf{1}]$.-A mixture of 17 (500 $\mathrm{mg}, 0.9 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(250 \mathrm{mg})$ in 30 ml of ErOH was shaken under H_{2} for 4 h and treated with HCl to afford $200 \mathrm{mg}(60.79 \%)$ of $\mathbf{1} \cdot \mathrm{HCl}$ as crystals from EtOH ; mp 230-231 ${ }^{\circ}$; free base: mp $182.5-184^{\circ}$ flit. (1) mp 198-200 ${ }^{\circ}$ (free base)]; ir $\nu \max 3224(\mathrm{~s}, \mathrm{OH}), 2800-2400\left(\mathrm{w},>\mathrm{NH}_{2}{ }^{+}\right)$ cm^{-1}; uv $\lambda \max (\mathrm{MeOH})(\log \epsilon) 281$ (3.87), 225 (4.54) nm; $\lambda \min (\mathrm{MeOH})(\log \epsilon) 252.5$ (3.09) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}) $82.48-3.07$ (6 H , m, methylenes), 2.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{N}$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-5$), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-6), 4.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.27(1 \mathrm{H}$, s, H-8), 6.91 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$), 6.62 (2H, d, J=8.3 Hz, H-3', H-5'), 8.92 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $9.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO- d_{6}) $\delta 16.3$ (C-4), $43.9(\mathrm{Me}-\mathrm{N}), 54.9(\mathrm{C}-3), 60.1(\mathrm{OMe}), 63.7(\mathrm{C}-1)$, 111 (C-8), 113.8 (C-3', C-5'), 113.8 (C-4a), 125.5 (C-8a), 126.0 (C-1'), 130.5 (C-2', C-6'), 140.2 (C-6), 149.3 (C-7), 150.5 (C-5), 156.4 (C-4'); eims $m / z 223(13), 222(100), 206(16)$; anal., calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \cdot \mathrm{HCl} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 60.88, \mathrm{H} 6.72, \mathrm{~N}$ 3.73, found C 61.20, H 6.65, N 3.70.

1-(4'-Hydroxybenzyl)-2-methyl-5-bydroxy-6,7-dimethoxy-1,2,3,4-tetrabydroisoquinoline $\mathrm{HCl}[(\pm)$ thalmeline HCl [4].-A mixture of $18(2 \mathrm{~g}, 3.6$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg})$ in 150 ml of ErOH was shaken under H_{2} for 4 h and treated with HCl to afford $800 \mathrm{mg}(60.79 \%)$ of $4 \cdot \mathrm{HCl}$ as crystals from EtOH; mp $160-162^{\circ}$ [lit. (6) 214 216° (dec) (oxalate)]; ir $v \max 3330(\mathrm{OH}, \mathrm{s})$,

2800-2400(w, $\left.>\mathrm{NH}_{2}{ }^{+}\right) \mathrm{cm}^{-1} ;$ uv $\lambda \max (\mathrm{MeOH})$ $(\log \epsilon) 280.5(3.51), 224(4.31) \mathrm{nm} ; \lambda \min (\mathrm{MeOH})$ $(\log \epsilon) 253(2.92) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.74$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{N}), 2.80-3.34(6 \mathrm{H}, \mathrm{m}$, methylenes), $3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-7), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-6), 4.43$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 6.73(2 \mathrm{H}, \mathrm{d}$, $\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 9.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $9.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 11.0 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}^{+}, \mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{Cnmr}$ (DMSO$\left.d_{6}\right) \delta 16.4(\mathrm{C}-4), 38.5(\mathrm{C}-3), 55.1,43.6(\mathrm{Me}-\mathrm{N})$, 55.1 (C-1), 60.4 (OMe), 102.9 (C-8), 110.5 (C4a), 115.3 (C-3', C-5'), 125.1 (C-8a), 126.3 (C$\left.1^{\prime}\right), 131.0\left(\mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 135.3$ (C-6), 147.6 (C-7), 150.5 (C-5), 156.5 (C-4'); eims $m / z 223$ (13), 222 (100), 206 (10); anal., calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$, C 59.45, H 6.83, N 3.65 , found C 59.89, H 6.95 , N 3.56.

ACKNOWLEDGMENTS

This research was supported by a grant from the National Sciences Council of the Republic of China (NSC-82-0412-038-018).

LITERATURE CITED

1. D. Sandoval, A. Preiss, K. Schreiber, and H. Ripperger, Pbytorhemistry, 24, 375 (1985).
2. T.H. Yang, S.J. Lin, and H.C. Wang, Chin. Pbarm. J., 43,457(1991); Cbem. Abstr., 117, 44523 (1992).
3. W.M. Whaley and T.R. Govindachari, in: "Organic Reactions." Ed. by R. Adams, John Wiley and Sons, New York, 1951, Vol. 6, Chapter 2, pp. 74-206.
4. K. Kurosawa, W.D. Ollis, I.O. Sutherland, O.R. Gottlieb, and A.B. de Oliveira, Phytochemistry, 17, 1389 (1978).
5. T. Reichstein, R. Oppenauer, A. Grussner, R. Hirt, L. Rhyner, and C. Glatthaar, Helv. Cbim. Acta, 18, 816 (1935).
6. M.M. Nikola, P.P. Panov, L.N. Thuan, and L. Panova, Dokl. Bolg. Akad. Nauk., 23, 1243 (1970); Chem. Abstr., 74, 61584t (1971).

Received 18 April 1995

